Optical characterization of Tm3+ doped Bi2O3-GeO2-Ga2O3 glasses in absence and presence of BaF2

نویسندگان

  • Kexuan Han
  • Peng Zhang
  • Shunbin Wang
  • Yanyan Guo
  • Dechun Zhou
  • Fengxia Yu
چکیده

In this paper, Two new Bi2O3-GeO2-Ga2O3 glasses (one presence of BaF2) doped with 1mol% Tm2O3 were prepared by melt-quenching technique. Differential thermal analysis (DTA), the absorption, Raman, IR spectra and fluorescence spectra were measured. The Judd-Ofelt intensity parameters, emission cross section, absorption cross section, and gain coefficient of Tm(3+) ions were comparatively investigated. After the BaF2 introduced, the glass showed a better thermal stability, lower phonon energy and weaker OH(-) absorption coefficient, meanwhile, a larger ~1.8 μm emission cross section σem (7.56 × 10(-21) cm(2)) and a longer fluorescence lifetime τmea (2.25 ms) corresponding to the Tm(3+): (4)F3 → (3)H6 transition were obtained, which is due to the addition of fluoride in glass could reduce the quenching rate of hydroxyls and raise the cross-relaxation ((3)H6 + (3)H4 → (3)F4 + (3)F4) rate. Our results suggest that the Tm(3+) doped Bi2O3-GeO2-Ga2O3 glass with BaF2 might be potential to the application in efficient ~1.8 μm lasers system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“Study of stable gallium oxide heavey metal Ga2O3-Bi2O3-PbO system glasses proposed as a base for optically noble glazes and enamels”

Ultra optical glasses are proposed for attaining noble glazes of high reflection and shine. In addition, these glasses can be used as semi-mirrors and optical instruments. In this reseach attempts were devoted mainly to introduce a glass system with the highest possible refractive index in which the highest reflection is desirable. Thus different amounts of heavy metal oxides modifiers, such as...

متن کامل

Optical properties of Nd doped Bi2O3-PbO-Ga2O3 glasses.

The optical properties of a new family of neodymium doped BPG (Bi2O3-PbO-Ga2O3 ) glasses are presented. We measured a high refractive index, of 2.5, and a transmission cutoff in the far infrared at 8microm. Three intense emission bands are observed centered at 877nm, 1066nm and 1341nm. The emission cross-section is 10 -20 cm 2 and the total spectral linewidth is 30nm at 1066nm. The Judd-Ofelt p...

متن کامل

Dispersion and Nonlinearity in Ultra-Optical Ga2O3 and TiO2-Bi2O3-PbO Glass Systems

Dispersion, as the characteristic variation of refractive index with wavelength, is more pronounced, where the wavelength is approaching to the absorption band. In ultra-optical glasses, the nonlinear refractive index, concerning to the light intensity dependent phenomenon, becomes considerable. Here, two ultra-optical property glass systems; TiO2-Bi2O3-PbO (TBP...

متن کامل

The Relationship between Structural and Optical Properties of GeO2-PbO Glasses

The structural and optical characterization of bulk GeO2-PbO glasses was the goal of this study. In this regard, six different (100-x)GeO2‌-xPbO (15<x<45) glasses were prepared by conventional melt quenching technique between two steel sheets. The produced samples were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and UV-Vis s...

متن کامل

بررسی خواص اپتیکی شیشه‌های سیستم GeO2-PbO-CaO-SrO در حضور مقادیر مختلف از اکسیدهای کلسیم و استرانسیم

In the present study, the structural, optical and thermal behaviors of GeO2-PbO-CaO-SrO glasses were investigated to achieve the highest optical properties and thermal stability. Accordingly, different 50GeO2-(50-x)PbO-xCaO and 50GeO2-(50-x)PbO-xSrO (x=0, 10, 20) germanate glasses were prepared by the conventional melt and quench technique between two steel sheets. The produced samples were cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016